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THE PROBLEM

Measure the characteristics of boundary layer turbu-
lence for water flowing through pipes under controlled
laboratory conditions. Study the character of turbulence
components and the nature of water flow noise by harmonic
and numei¢cal analysis of experimental measurements.
Compare the findings with existing knowledge of airflow
and with theoretical analyses and computations of flow
noise. Derive a method for approximating water flow noise
values for a range of conditions.

RESULTS

1. The water pipe flow studygave experimentally de-
rived values of pipe wall pressure fluctuations, radial pipe
deflections at one point, and pressure-head variation along
the pipe, for turbulent flow rates from 0.65 to 9.6 fps with
the experimental test pipe section insulated from external
noise sources.

2. Test pipe material, test pipe length, and location
of the measurement points (hydrophone location, etc.,) did
not influence the measured values.

3. The broadband fluctuating pressure at the pipe
wall depends directly on the dynamic pressure and some-
what on the Reynolds number as related by the relation
p/i = ko 0. 079 /R" . The value of k (the velocity ratio of

* a" fluctuating radial stress to the wall shear stress in the

constant stress region) averaged 0. 9 for the experimental
data.

4. Based upon analysis of 232 spectra cxtrves, the
shapes of the curves are nearly identical and are of the
form expected from theory. Before the peak, the slope of



the curves is about 1.0, and after the peak, in the equilib-
rium region, the slope is about -1.66, resembling the
Kolmogoroff-region slope of the kinetic energy spectrum.

5. The position of the peak of the spectra curves
depends upon the flow conditions. Based upon study of 232
spectra, the position corresponds to a Strouhal number of
0.49 and to a wave number of 150 feet".

6. Spectral measurements with the micrometer set,
with very thin pipe wall thicknesses, approximated hydro-
phone measurement spectra.

7, Numerical analysis of photographed waveforms
produced autocorrelations and power spectra. Spectra from
the numerical analysis agreed with those from third-octave
analysis. The Taylor microscales of turbulence are of the
same order of magnitude obtained for air flow by other
experimenters.

8. The dissipation values for water flow, based
upon wall shear stress measurements, are of the same
order of magnitude as Laufer's values for air flow.

RECOMMENDATIONS

1. Apply the derived method for approximating the
magnitude of broadband fluctuations to experimental, de-
velopmental, and service use.

2. For research purposes, use test hydrophones
which resemble those used in actual service applications.

3. Continue pipe-flow "water tunnel" experiments as
an efficient method for studying water flow noise and turbu-
lence. Study higher flow rates and response frequencies



under the type of laboratory conditions described herein.
Study application of experimental findings to component and
system development.

ADMINISTRATIVE INFORMATION

Work described herein was performed under SR 011
01 01, Task 0401 (NEL Z1-21) by the Listening Division.
This report covers intermittent work from 1958 to Feb-
ruary 1963. The report was approved for publication
13 May 1964.
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INTRODUCTION

This report covers a continuation of basic research
initiated by C. N. Miller of the Navy Electronics Labora-
tory to study water flow noise. These studies have in-
cluded experiments with streamlined bodies falling through
water, to show that measured laminar flow noise values
would be less than turbulent flow values. The falling body
noise experiments were conducted with 19 laminar test
bodies, at Lake Pend Oreille, Idaho, and were completed
in December 1962.1*

Experimental studies of noise produced by the flow of
water through pipes have been performed at Northwestern
University and at the U. S. Navy Experiment Station,
Annapolis, Maryland. ** However, these studies were not
concerned with the nature of flow noise, but rather were
designed to show the sum total noise in piping systems.

The pipe flow experiment described in this report
was devised for the study of flow noise produced by forcing
water through brass, plastic, and glass pipes at controlled
rates, under laboratory conditions. Flow rates of 0.65 to
9.6 fps were obtained without extraneous noise, and accu-
rate flow noise measurements were made.

*Superscript numbers refer to the list of references at the
end of this report.

* *This activity is now designated the U. S. Navy Marine
Engineering Laboratory.
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WATER PIPE FLOW NOISE
EXPERIMENT

The objective of the experiment was to produce water
pipe flow noise over a range of flow rates through pipe of
different materials, under controlled conditions, and to
collect, for further processing and analysis, three basic
measurements related to the nature of boundary layer
turbulence. Thu;se measurements were: 1) hydrophone
pickups, 2) pipe wall fluctuations, and 3) pressure
differential along the boundary layer.

INSTRUMENTATION

The experiments were conducted in a concrete-
floored building remote from industrial and traffic noise
and vibration. The building provided space for a 65-foot-
long straight and level pipe run, and had separate rooms to
-help isolate the test pipe section from the sound of equip-
ment elsewhere in the building.

Fresh water was stored in a pressure tank, and
entered the test pipe section through a globe valve and a
30-foot straight-line assembly of soft rubber tubing and
special fittings (fig. 1). The tubing was used to eliminate
conduction of noise and vibration to the test pipe section.
A manometer, calibrated in pounds of water flow per
minUte, was installed across a 3-inch to J -incb reducer
between sections of rubber tubing, to function as a venturi
flow gauge. The reducer and other fittings and connections
in the water line were specially designed and fitted to
minimize flow disturbances.

Figure 2 shows a typical test setup. The water
storage tank was pressurized through rubber tubing from a
zero- to 100-psig controllable external air supply to regu-
late the water flow rate through the test pipe. The test
pipe section, located in a separate room with measuring
and recording equipment, was connected to input and output
i-inch ID soft rubber tubing by special tapered fittings to

10



Figure 1. Input section of water pipe flow noise
experimental setup.
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maintain a constant inside diameter. The output tubing led
into and was coiled down inside a collection tank installed
on Fairbanks Morse platform scales. A viscometer and a
float-type flowmeter were inserted in the rubber outlet line
near the receiving tank.

The test pipe section was of several configurations,
comprising 3/8-inch pipe of either glass, brass, or poly-
vinyl chloride high-impact plastic. Test sections were
supported on 2 inches of rubberized horsehair acoustic
padding in a solidly supported wooden trough. The pipe
selected for the experiments had an inside diameter of
0.494 inch and a wall thickness of 0.09 inch. The test pipe
section was instrumented with either of two types of test

hydrophones and with an electronic micrometer to measure
radial pipe wall fluctuations. Plastic and brass test pipe
sections were drilled at two points to provide differential-
pressure manometer taps to measure shear pressure drop.

The hydrophone elements were installed flush with
the inner walls of the test pipe sections, using special
adapters. The smaller-area hydrophone was a barium
zirconium titanate bimorph bender 0.37 inch long and 0.1
inch circumferentially. The other was a radially polarized
barium titanate ceramic cylinder 0.45 inch long and 0.494
inch ID, mounted flush inside a brass adapter fitting.
Details of hydrophone design and calibration are contained
in Appendix A.

The electronic micrometer (Micrometer Set, Mutual
Inductance, AN/tISM-43) was rigidly mounted to 10-inch-
long test pipe sections which had been thinned in that area
to 0.003-inch wall thickness. The micrometer probe was
inductively coupled to a flat metallic surface on the pipe to
measure fluctuations in the separating distance as small as
10 "r inch. (A flat brass disc was cemented to the plastic
pipe to enable inductive coupling. The micrometer was not
used with the glass pipe.)

The hydrophone was connected through a preamplifier,
amplifier, and attenuator to a Tektronix 512 oscilloscope,
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a Magnecord P-60 single-channel tape recorder, and a
voltmeter. A Hewlett Packard 20 c/s to 5 kc/s oscillator
and a General Radio random noise generator were connected
to the recorder and oscilloscope through an attenuator and

the preamplifier channel. The mutual inductance microm-
eter set was connected directly to the oscilloscope, re-
corder, and voltmeter.

Arrangement of the readout and recording equipment,

shown in figure 3, allowed simultaneous visual display and
recording of alternate hydrophone, micrometer, time-
reference, and random noise signals.

ATIENUATOR TEKTRONIX1
MODEL 512

OSCILLOSCOPE

WIDEBAND
AMPLIFIER MAGEECP-DMODEL P-60

WIDE BAND
AUDIO TAPEL iii REAMP~'~JRECORDER

1 VOLTMETER

ATTENUATORj

IMICROMETER SET,
MUTUAL INDUCTANCE,

OE LANIUSM-43

HEWLETT PACKARD GENERAL RADIO

20 CIS TO 5 KCIS RANDOM NOISEI OSCILLATOR GENERATOR

Figure 3. Instrumentation 8etup.



PROCEDURE

The storage tank was filled with fresh water and
pressurized from a constant compressed air supply at a
predetermined regulator setting corresponding to a given
water flow rate. Zero-flow hydrophone-circuit ambient
noise, oscillator, and white-noise generator calibration
reference signals were alternately tape-recorded (the
recorded zero-flow ambient noise was no greater than the
theoretical circuit noise value computed for the hydrophone-
amplifier circuit).

The water collection tank drain was closed and the
water storage tank outlet globe valve was opened. As water
flowed through the test section, visual readings of water
temperature, viscosity, flow rate, and shear pressure
drop were recorded on data sheets. Micrometer, hydro-
phone, oscillator, and random-noise generator signals
were alternately tape recorded. For each configuration of
the test pipe section (table 1) test runs were conducted over
a range of flow rates, and measurements and reference
signals were recorded for each run.

TABLE 1. WATER FLOW TEST CONFIGURATIONS

Pipe Material Pipe Length Instrumentation

PVC Plastic 10 feet Hydrophone, Micrometer,
Manompter

3 to 30 feet Manometer

Brass 10 feet Hydrophone, Micrometer,
Manometer

3 to 30 feet Manometer
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Accurately controlled water flow from 2.79 to 50
pounds per minute was achieved, giving mean average flow
rates over the range shown in table 2 (to achieve the lower
flow rates, the outlet tubing was constricted between the
test pipe section and the collection tank).

TABLE 2. WATER FLOW THROUGH 0.494-INCH ID PIPE*

Pounds Water/Minute 2.79 10.0 20.0 30.0 40.0 50.0
* | 111

Flow, Feet/Second 0.56 2.005 4.01 6.015 8.02 10.025

Flow, Knots 0.332 1.187 2.374 3.561 4.748 5.935

*Based on fresh water at 600F, with a density of 62.422 pounds per cubic
foot.

Water flow boundary layer turbulence was cbserved
in the glass pipe over the range of flow rates, using a lens
system and a bright light to illuminate suspended particles.

DATA REDUCTION

Raw data were recorded on 125, 000 feet of broadband
audio tape. These data were reduced to quantitative form
in several ways, and were integrated with numerical records
from the coreesponding data sheets of each run, for analysis
and study of the characteristics of the flow noise. The ex-
periment provided necessary data to derive autocorrela-
tions; power spectra, broadband magidtudes, and spectrum
levels in several ways; and boundary layer wall shear
measures of energy dissipation.

A Polaroid camera attached to the oscilloscope
photographed the hydrophone and micrometer signal patterns
(fig. 4). These patterns were analyzed by Fourier methods
to derive power siectra and autocorrelations.

The audio tapes were played back through a Sanborn
broadband amplifier/recorder to give graphic analog traces
of rectified rms hydrophone and micrometer signal
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amplitudes, together with oscillator and random noise refer-
ence signal traces. The broadband recordings were also sorted
into selected third-octave filter channels of a Sanborn
Model 150 six-channel recorder and an NEL hird-octave
digital analyzer. These provided analog traces of rms
values against an accurate time scale, and digital printout
of one-cycle bandwidth dB values.

WATER FLOW RATE 31 WATER FLOW RATE 36.6
POUNDSIMINUTE 15. 3 FPS) POUNDSIMINUIE 17. 35 FPS)

5. 0 MILLISECONDICENTIMETER 0. 5 MILLISECONDCENTIMETER

1.67 M I SECONDCENTMETER 5 M LLI SECOND CENTIMETER

G. 5 MILLISECONDICENTIMETER 0. 5 MILLISECONDICENTI ETER

Figure 4. Photographed oscilloscope tracings o
broadband audio signals from cylindrical hydro-
phone pickups of water flow noise in plastic pipe.
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DATA ANALYSIS AND
PRESENTATION

Results of the water pipe flow experiments were re-
duced to several graphic forms from which representative
data were selected for correlation, analysis, and presenta-
tion. Polaroid photos, broadband rectified rms analog
traces, single-channel rms dB analog traces, single-cycle
bandwidth rms dB values in digital printouts, and numerical
records from data sheets were used in numerical and
harmonic analyses. Results of the analyses are discussed
briefly and presented in graphic form. Theory and methods
used in the analyses are presented in Appendix B. Con-
clusions and recommendations are presented in a following
section.

The characteristics of turbulent flow are generally
defined by characteristic lengths, correlation functions,
characteristic velocities, and by spectrum components.
The nature of flow noise, in this case the measured pressure
fluctuations at the pipe wall, can also be related in terms
of the same types of variables. The one-point hydrophone
and micrometer measurements furnished broadband and
spectrum levels, and the broadband magnitudes are shown
to be related to the velocities.

AU TOCORRELATIONS

Autocorrelations of pressure components were
measured at the same point of the pipe wall, and in the
same radial direction, but differ in their time separation.
The autocorrelation is a periodic function of time lag, and
is a Fourier transform of the power spectrum. The
Polaroid photos of sound pressure waves were used for
numerical evaluation of the autocorrelations. Results are
sh.-own in figures S and 6.
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Figure 5. Autocorrelat ion of wall pressure
fluctuationsocalculated from oscilloscope photos

for 7.32 fps flow rate.
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for 4.7 and 7.44 fpe flow rates.
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POWER SPECTRA

Spectrum levels were obtained from Sanborn analog
records, TODA digital printouts, and by numerical analysis
of the Polaroid photos. Figures 7 and 8 show representa-
tive measured spectra for the two types of hydrophones and
for brass and plastic pipe. The curves show pressure level
plotted against wave number. Approximately 232 spectrum
curves of pressure fluctuations were obtained from experi-
mental recordings. The shapes of these curves vary, but
have fairly constant rising and falling slopes and wave
numbers of their peaks. The average rising slope is 1.0,
and the average falling slope is 1. 66: this is nearly equal
to the Kolmogoroff slope of -5/3.

Figures 9 and 10 give spectrum levels of pressure
calculated from the photographs, for various flow velocities
with both types of hydrophones. These curves are of the
same shape and peak at about the same wave numbers as
the curves from the Sanborn and digital analyzer records.
For low flow rates, the curves from either source rise and
fall less steeply than on curves for higher flow rates (at
the low flow rates, the Reynolds numbers may be too low
for the inertial subrange -- in which the flow is determined
solely by the dissipation rate -- to occur).

Figures 11 and 12 show spectrum curves of pipe wall
fluctuations from the micrometer measurements. The
rise and fall rates are generally less than for hydrophone
signal curves. This may result from pipe wall stiffness
limiting the correlation distances to small values. Sharper
correlation curves tend to produce larger high-frequency
components in the system, and they tend to flatten the
spectrum curves.

Spectrum curves for the experimental data peak with
a mode near the wave number of 150 feet" . The ordinates
of the spectrum curves can also be in terms of the nondi-
mensional Strouhal number, S = nr/J, where r is the pipe
radius, 7 is the mean average flow velocity, and n is the
frequency.

21



WAVE NUMBERS, k = 2 nniU, CONVERT TO STROUHAL NUMBERS, S nrlU
WHERE n IS THE FREQUENCY IN CIS

r ISTHE PIPE RADIUS IN FEET
' IS THE MEAN. AVERAGE FLOW VELOCITY IN FPS

BY MULTIPLYING THE WAVE NUMBER BY 0. 3279 x 10- 2

90.0 567 FP

-I#
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tj 100
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0.0

cOr

50.0-

10 100 1000 10,000
WAVE NUMBER, FEET -1

Figure 7. Cylindrical hydrophone sound power
spectrum with brass pipe flow.
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WHERE n IS THE FREQUENCY IN CIS

r IS THE PIPE RADIUS IN FEET
i IS THE MEAN, AVERAGE FLOW VELOCITY IN FPS
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Figure 8. Birnorph hydrophone sound power

spectrum with plastic pipe flow,
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Figure 9. Power spect rum of wall pressure
fluctuations# calculated from oscilloscope vhiotos
for 7.44 fps flow noise.
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Figure 10. Power spect rum of wall pressure*
fluctuation-, calculated from oscilloscope phw toa
of flow noise for several flow rates,
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flow rates of 2.36, 4.52, and 7.46 fp's through
plastic pipe.
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Multiplying the wave numbers of figures 7, J, 9, and
10 by 0. 3279X10r 2 will give the equivalent Strouhal number
for the 0.494-inch ID experimental pipe.

The maximum of the spectrum corresponds to the
average size of the energy-containing eddies, and the eddy
size is proportional to the pipe size. The spectral maxima
should occur at the same Strouhal number for pipes of
different size, since both eddy sizes and Strouhal numbers
are proportional to the pipe diameter. When the spectra
are plotted in terms of the Strouhal number, the peak should
occur at S = 0.49, based on the mediatn peak value of
150 feet" in wave number. The ratio of the pipe diameter

to the eddy size for this wave number is 6.18.

The spectrum curves are plotted in the same di-
mensions as the kinetic energy spectrum plots of Laufer,
Schubauer, Taylor, Klebanoff, and others. The pressure
spectrum is of the same dimensions as the energy spec-
trum. Figure 13 compares a Laufer spectrum curve with
one from this study, with the curves plotted against Strouhal
number. The curve from this study has a wave number of
120 feet-' at the peak, and the Laufer curve has a wave
number of 0.2 centimeter at the peak. Laufer used a
9.72-inch ID pipe, and his wave numbers convert to Strouhal
numbers by multiplying by 1. 965. The Laufer curve is for
the radial-direction kinetic energy spectrum as measured
at a distance of 0.691 radius from the pipe wall. The
curve Laufer measured nearest the wall is flatter than
other Laufer curves and most of the curves from the water
pipe flow study (probe measurements are not as accurate
near the wall). The Laufer curve and the curve from this
study are similar, an both peak at Strouhal number 0.393.

The pressure spectrum curves from this study re-
semble the energy spectrum curves of contemporary fluid
mechanics. The slopes of rise and fall about the maximum
are nearly those expected from the theory of isotropic
turbulence.
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NOTE: STROUHAL NUMBER, S = rnIU. WHERE r I S THE P IPE RAD IUS I N FEET
U IS THE MEAN, AVERAGE FLOW IN FPS
n IS THE FREQUENCY IN CIS

-- TY PICAL WATER PI PE FLOW SOUND PRESSURE. MEASURED
US ING CYLINDR ICAL HYDROPHONE I N PLASTI C PI PE,
AT628 FPS FLOW RATE

-LAUFER RADIAL KINETIC ENERGY SPECTRUM AT 0. 691 RADI US
FROM WALL OF 9. 72-INCH ID WIND TUNNEL 2

00

70.0-

6 0.0 -

I~~ IIfll

0.0 0.1 1L0 10.0 100.0
STROUHAL NUMBER

Figure 13. Comparison of Laufer's kinetic energy
spectrum with preesure spectrum of water pipe flow
measurements.
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BROADBAND MAGNITUDES

Broadband amplitude values were obtained directly
from rectified rms analog tracings, and from numerical
integration of spectra levels and numerical analysis of
Polaroid photos. The Sanborn traces of hydrophone and
micrometer signal levels were compared to parallel traces
of the reference oscillator and white-noise generator signal
levels.

In figures 14 and 15, ratios of broadband magnitudes,
measured from both types of hydrophones, to measured
dynamic pressure head, piq, are plotted against Reynolds
number. Theoretical p/g values, based on the equation
p/q = ,2F (where F is Blasius' relationship between the
friction coefficient and the Reynolds number equal to
0. 079/ R * ), with k equal to values of 0.9, 1.0, and 1.44,
are shown as straight lines. The value of h is the ratio of
the fluctuating radial stress to the wall shear stress in the
constant stress layer (it is assumed that the fluctuatinig
radial l.ressure at the pipe wall may be nearly equal -n
magnitude to the fluctuating pressure in the con3tant stress
layer). The measured ; value, with Lhe hydruphone mounted
flush with the inside of the pipe wall and responding only to
radial pressure components, can be expected to be 0.9.
With a hydrophone responding to the mean of the fluctuating

components, the k value should be 1. ,4..

Effective broadband magnitudes measured by hydro-
phones are shown in figures 16 and 17, plotted against
measured dynamic pressure head, q = jiop 7, where p is
the fluid density and U is the mean fluid velocity.
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NOTE:
1. POINTS PLOTTED REPRESENT VALUES OF plq COMPUTED FROM

MEASURED DATA.
2. STRAIGHT-LINE CURVES FOR VALUES OF k SHOW THEORETICAL

plq PLOTS BASED UPON THE EQUATION plq = kF WHERE F IS
BLASIUS' RELATIONSHIP BETWEEN THE FRICTION COEKFICIENT
I AND THE REYNOLDS NUMBER; F = 0. 0791R"25. k IS THE VELOCITY
RATIO OF FLUCTUATING RADIAL STRESS TO THE WALL SHEAR STRESS
IN THE CONSTANT STRESS LAYER.

p IS THE MEASURED RMS BROADBAND VALUE
q - 12pU 2
REYNOLDS NUMBER, R -UD P/9
WHERE P IS THE FLUID DENSITY

U IS THE MEAN, AVERAGE FLUID VELOCITY
D IS THE PIPE INSIDE DIAMETER
p IS THE FLUID DYNAMIC VISCOSITY

_ IF

0.01 W 1.44

" , ~ - - 1.0O

k -0.9

0.001
100 10,000 100,000 1,000,000

REYNOLDS NUMBER

Figure 14. Bimorph hydrophone broadband magnitude
to dynamic head ratios, plotted against Reynolds
numbe r.

30

77



NOTE:
1. POINTS PLOTTED REPRESENT VALUES OF pq COMPUTED FROM

MEASURED DATA.
Z STRAIGHT-LINE CURVES FOR VALUES OF k SHOW THEORETICAL

plq PLOTS BASED UPGNi TIE EQUATION p/q = k2F WHERE F IS
BLAS IUS' RELATIONSHIP BETWEEN THE FRICTION COEFFICIENT
f AND THE REYNOLDS NUMBER; F 0. 079/R. 25 k IS THE VELOCITY
RATI 0 OF FLUCTUATING RADIAL STRESS TO THE WALL SHEAR STRESS
iN THE CONSTANT STRESS LAYER.

p IS THE MEASURED RMS BROADBAND VALUE
q - 1/2pU2

REYNOLDS NUMBER, R = TD p/p
WHERE pIS THE FLUID DENSITY

U IS THE MEAN, AVERAGE FLUID VELOCITI
D IS THE PIPE INSIDE DIAMETER
p IS THE FLUID DYNAMIC VISCOSITY

.1

0.01 1-I I A-k 1. 44 - ,

I.-

~L
0-.9

, 1
0.001I. ...

1000 10, 000 1000 LOiJOU
REYNOLDS NUMBER

Figure 15. Cylindrical hydrophone broadband
magnitude to dynamic head ratios, plotted against
Reynolds number.
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OYNAM IC PRESSURE HEAD, q 112 p')2
WHERE p IS THE FLUID DENSIr

l- IS THE MEAN AVERAGE FLUID VELOCITY

ii

100

0Z
.0

1----.-.

- - . . _________

10M 10.00D00A
DYNAMIC PRES~'JRE HEAD, DYNES PER SQUARE CENTIMETER

Figure 16. Oylindrfcal Pzydrophocne broadband
magnitudes of fluctuating pressure at wall of
brass pipe, plotted against dynamic pressure*
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1000 _ __ _ _ _ _ _ _-

DYNAMIC PRESSURE HEAD, q : 1/2p1 2

WHERE p IS THE FLUID DENSITY [

U IS THE MEAN, AVERAGE FLUID VELOCITY

S-v

aK 0

Opr0

c10 A._

z 0

1000 ..00 10D 00
0 0u

10 -• - __

00 -0,-o0100, -

DYNAMIC PRESSURE HEAD, DYNES PER SQUARE CENTIMETER

Pigure 17. Measured effective hydrophone broad-
band magnitudes of pipe wall fluctuating pressure,
plotted against dynamic pressure.
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WALL SHEAR STRESS/DYNAMIC HEAD RATIO

The wall shear stress/dynamic head dimensionless
ratio can be used to evaluate the fluctuating pressure to
dynamic head ratio, p/q. The wall stress/inertia head
ratio, /q, is nearly constant over the range of water pipe
flow experiments, but is a function of the Reynolds number.
Wall shear values were measured with a differential-
pressure manometer over lengths of test pipe during the
water flow experiments, and were recorded on data sheets.
Figures 18 and 19 show the wall shear stress/dynamic
head ratio plotted against dynamic head and against Reynolds
number. The variation .. th Reynolds number resembles
the Blasius friction equation discussed under theory in
Appendix B.

PIPE WALL DISPLACEMENT

The mutual inductance micrometer obtained mea-
surable fluctuations from plastic and brass pipe after the
pipe wall thickness was reduced to 0.003 inch near the
probe: measurable displacement was dependent upon wall
thickness. Radial displacement above quiescence of plastic
pipe with 0.003-inch thick wall is shown plotted against
broadband wall pressure in figure 20. Power spectra for
radial displacement of plastic and brass walls are shown in
figures 11 and 12, plotted against frequency.
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WALL SHEAR STRESS, -r:APrL2
WHEREAP IS THE PRESSURE DROP OVER THE LENGTH L

r IS THE PIPE RADIUS
L IS THE LENGTH OVER WHICH AP WAS MEASURED

DYNAMIC PRESSURE HEAD, q - 1/2pD2

WHERE p IS THE FLUD DENSITY
D IS THE EAN, AVERAGE FLOW VELOCITY

0.1 -

..0

O.1 " - - ,. , - . -e - --

n- -

' n

0.0O1 - - - - - .j

100D 10,0 100,000
DYNAMIC PRESSURE HEAD, DYNES PER SQUARE CENTIMIER

Figure 18. Wall shear etress to dynamic pressure
ratioe, plotted against dynamic pressure head.
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WALL SHEAR STRESS, 'r:APrL2
WHERE AP IS THE PRESSULRE DROP OVER LENGTH L

r iSTHE PIKERADIUS
L S THE LENGTH OVER WH ICH AP WAS MEASURED

DYNAMIC PRESSURE HEAD, q:z 1/2 pl2, AND
REYNOLDS NUMBER, R =UTD pipl,
WHERE p IS THE FLU ID DENS ITY

Gi IS THE MEAN, AVERAGE FLU ID VELOC ITY
D IS THE PIPE INSIDE DIAMETER
Ai IS THE FLUID DYNAMIC VISCOSITY

0.01 1- - _ _ _

00

0 0q

0. 001- -_ _ _ - --

1000 1,0 0.0
REYNOLDS NUMBER

Figure 19. Wall shear atres8 to dynamic pressure
head ratios, plotted against Reynolds number.

Li 36



0

10.0--*--

10 100 1000 10,000

WALL PRESSURE FLUCTUATIONS, DYNES PER SQUARE CENTINIETER

Figure 20. Micrometer measurements of 0.003-inch-

thick plastic pipe wall displacement, plotted
against broadband wall pressure fluctuatio~s
measured with cylindrical hydrophone.
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CONCLUSIONS
AND RECOMMENDATIONS

This study of water noise in pipes has demonstrated
the feasibility and economy of "water tunnel" experimenta-
tion in turbulent flow noise research. The study also
demonstrated the applicability of the theory of classical
mechanics to water flow, and enabled the derivation of an
engineering method for computing values of water flow
noise for given conditions.

Conduct of water flow noise research under laboratory
conditions enables control of the variables which is possible
in no other way. This basic research establishes criteria
applicable to further laboratory studies, research under
more severe conditions, and to developmental programs.

The "water tunnel" type of experimentation should be
continued to study higher flow rates and response frequencies.
Application of the results of this study to design and develop-
ment of components and systems for research and service
use should be encouraged.

8I
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APPENDIX A:
EXPERIMENTAL HYDROPHONES

Since hydrophone responsiveness depends upon size,
material, shape, and polarity of the element, the accuracy
of tih, measured data depends upon accurate hydrophone
calibration.

The cantilever-bimorph type shown in figure A-1
would not be expected to respond equally over its face if it
were calibrated by a plane wave; its best response area is
near its free edge, and its effective length may be less than
half its true length. The bimorph type experimental hydro-
phones were calibrated in a iree fiele and also within a test
pipe section, using a small probe reference hydrophone.
Calibration res ° '-s are shown in figure A-2; the response
measured within the pipe is several decibels higher than
that measured in a free field.

The radially polarized barium titanate cylindrical
type hydrophone, figure A-3, resembles those used in
service applications. This type was calibrated by plane
waves, with results as shown in figures A-4 through A-7.
Its response to wall pressure fluctuations can be expected
to be similar to the sum of the signals from the elemental
areas, added statistically.
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0. 6750OD BY 0. 494 I D
o-ru~c BRASS PiPE AMD HOUSING

SEALS

figure A-i. Barium zirconium titanate bimorph
hydrophone with element mounted in machined slot,
flveh w'ith 'pipe inside wall.

44



MEASURED AT SWEETWATER CALI BRATION STATION
WAIER TEMPERATURE 14.5 0C OPEN C IRCW T VOLTAGE &WASURED AT THE
DEPTH 3.9 AMRS END OF 6.2 METERS OF RGMU~t CABLiE

-NO PIPE
-*W-* IN PIPE

110 I
sII

120 I:I
0.1 1.0 10.00

FREQUENCY, KC/S

Figure A-2. Bimcrph hydrophzone receiving response
calibration in a free field and Inside a pipe.

0. 54 INCH ID BY. 69 gTH OP RUBBER WASHERSIBATlO3 RAD IALLY POLAR IZED

0.4IIC 0.4m INCH
0.675 INCH

BRASS FirS SNUGLY TO PIPES
WITH SPECIAL CON'XECTORS

Figure A-3. Ra&1ially polarized bariumt titanatd
ylindrica 

l ?ydrophono. 
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MEASURED AT SWEETWATER CALIBRATION STATION
WATER TEMPERATURE 26°C OPEN CIRCUIT MEASURED AT
DEPTH 3.9 METERS THE END OF THE CABLE

- MEASURED IN THE DIRECTION 4= 900

MEASURED iN THE DIRECTION 0 = 00

1o --- ,

90' -

N110 __

Mr ~12D -

0.01 .1 L0 10.0
FREQUENCY, KCIS

Figure A'4. Cylindrical hydrophone receiving
response calibration.
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SWEETWATER CALIBRATION STATION 3 AUGUST 1959
t6 2

WATER TEMPERATURE 260C TEST D ISTANCE 2 h!TER S
DEPTH 3.9 METERS 02900
SCALE 10 DO PE.R RADIAL DIVISION ROTATE 0

Figure A-5. Cylindrical hydrephone calibration
* direct ivity pattern, 5 kc/e.

47



SWETWAER CALI BRATION STATION 3 AUGUST 1959

WATER TEMPERATURE 260C TEST DISTANCE 2 ?vEIRS
DEPTH 2- 9 METERS 0z go*
SCALE 10 DB PER RAD IAL DI V IS ION ROTATE 6

Figure A-6. Cylindrical ?zydroplzone calibrat ion
direet!vity pattern, 10 Ac/a.
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MASURED AT SWEE.I A.ER CALIBRATION STATION

#j4=\

z WATER TEMPERATURE 260C MEASURED WITH CABLE
DEPTH 1.9 MEERS BALANCED OUT

- DOI"D CURVE: R -
. SOLID CURVE: -X

1o2

0.0 .0 4.0 6.0 80 .0 12.0

FREQUELCCY, KCiS

Figure A-9. Cylindrical hydrophone complex
impedance calibration, eeriep measuremento.
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APPENDIX B: THEORY

MECHANICS OF FLOW

The flow of water through a pipe can be explained by
classical mechanics. The behavior of a continuous medium
(which the water is assumed to be) under mechanical and
thermal environmental influences is controlled by the laws
of conservation of mass, conservation of energy, and non-
decreasing entropy, and by Newton's second law of motion
in the form use d in fluid mechanics under the name of the
Navier Stokes equations. The first law is the equatiln of
continuity. The next two are the first and second laws of
thermodynamics. The thermodynamic and the mechanical
behavior are coupled through the equation for the conserva-
tion of energy, and through the equation of state which
relates stress with strain. The thermal and mechauical
problems can be separated when the rise in temperature
and the volume changes are small. The cross-coupling by
compressibility is usually small for a nearly incorpressible
fluid like water. For the pipe flow experinents, the ther-
mal and mechanical problems can be separated. Only the
mechanical problem is investigated at length herein.

Energy is required to push the water througi the pipe.
Friction opposes the motion, and the water does iot slip
freely at the pipe wall. Part of the friction energy appears
as the pressure energy of flow noise, with most of the
energy eventually converted to heat. If the water could
slide through the pipe without losses, it would be called an
ideal fluid. An ideal fluid does not have dissipation and
cannot support shearing stresses in motion. All moving
real fluids show dissipation which appears entirely as shear
energy, since there can be no permanent volume changes in
real fluids. The most common theoretical fluid ,oonsidered
is the Newtonian fluid in which all the dissipation is ex-
pressible in terms of strain rates alone. This fluid is
defined by a simple relationship (below) between tht shear
stresses and strain rates through the fluid-characteristic
coefficient called the viscosity, which determines the
dissipation:
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T 2gi = 2 j+6 (1)

where T is the shearing stress, with tJj

A is the coefficient of viscosity

UtU i are the velocity components

tj is the strain rate ia shear, with t~j

X'? x are the space distances.

In a moving fluid, the stress depends on both the
static strains and the strain rates. In an isotropic elastic
solid, the equation of state shows that the stress is related
to the strains through two elastic constants. For a fluid
that is not moving, mean stresses are related to mean
strains through one elastic constant:

la = B(A-aT) = B(3 ,C-aT) (2)

where a is the mean stress

,c is the mean strain, equal to Ai./3

B is the bulk modulus of elasticity

A is the dilation, or volume change per umt volume

a is the coefficient of volume expansion

.T is the temperature.

Static fluids cannot support shearing stresses. The
state of stress for a moving fluid is the sum of the mean
stress, or hydrostatic pressure, and that resulting from
the fluid motion. Because of viscosity, the moving fluid
also has shear stresses that are proportional to strain
rates. The stress in a;knoving fluid is gven by the formula:

52



where a its Lhe stress

6tj is the Kronecker delta (equal to 1 when tjtnd zero when tiJ)

i. the viscosity

P is the hydrostatic pressure

Ut0 uj are the velocities

xto x are space dimensions

U k  is free Kronecker index for velocity

x,, is free Kronecker index for distance.

The energy dissipation per unit volume in a Newtonian
fluid due to mechaical causes is given by:

tj= t.! = 2$s(v )2 (4)

where b is the energy dissil ation per unit volume

0 'j is the stress

tJ is the strain rate in shiear (tdJ)

g is the viscosity.

The problem of the viscous fluid is stated in the
following equations:

Continuity:

a;p (Pu)
- = (5)

;t
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where p is the fluid density

Uk is free Kronecker index for velocity

x, is free Kronecker index for distance.

The First Law of Thermodynamics:

dh dT _ , i de A V2~ l (6)
0"d P'et-t dt 6-r(t tj)

where h is the enthalpy per unit mass

s is the entropy per unit mass

t is time

.T is the tempei ature in degrees absolute

e is the internal energy per unit mass

A is the dilation

p is the fluid density

9t is the heat conducted per unit volume

g. is the viscosity

,j is the strain rate

C is the specific heat

X is the distance.

The Second Law of Thermodynamics:

ps + 0 0(7)

where a is the entropy per unit mass

X is the distance

q is the heat conducted per unit volume

T is the temperature.
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Newton's Second Law of Motion:

where F4t is the external force per unit mass

Utj is the stress

x . is the distance

U t is the velocity

t is time.

The First Law is the energy relation for the motion.
It can be used to develop the equationc for the thermal
boundary layer using Fourier's law of heat conduction
(which equates heat conducted in a direction to the product
of the space derivative of temperature in that direction) and
the constant of conductivity. The Second Law of Thermo-
dynamics states that the net change in entropy in a region
(the entropy generated in the region and conducted out of
the region) must be zero or greater. Substitution of the
complete stress-strain relationship, equation 3, into the
Second Law of Motion leads to the fundamental equation of
fluid mechanics, the Navier Stokes equation:

auo (9)

where p iL the fluid density

L is a velociL) component

t is time

F. is the external force per unit mass

p is the coefficient of viscosity
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u, is free Kronecker index for velocity

is free Kronecker index for distance

X is the distance,

SIMILARITY CONDITIONS OF TURBULENCE

0. Reynolds made a detailed study of the character

of flow in 1883. &lMy oi the concepts of turbulence are
due to Reynolds who noted that for similar flows about
geometrically similar bodies with different fluids, different
velocities, and different densities, the forces on the fluid
particles must bear a fixed ratio. When various measurable
quantities and dimensional constants are completely related,
an equation can be written in terms of dimensionless ratios
to describe the relationship. In order for two flows to be
similar, the ratios must be the same for the flows. For
similar flow processes, the dimensionless ratios are the
ratios between the various types of for:es. The principal
ratios are listed below:

inertia . R Reynolds number
viscous

gressure P- pesr/sersrs

viscous T rIur/harsrs

pressure =- pressure/acousticelastic B Poo

pressure.=
inertia pVpressure /dynamic head

inertia V V

e=tic V Mach numberelastic B 02

inertia V2
i t VFroude number

gravity 1g

viscous __---isc T shear/dynamic head
inertia P



where p is the fluid density

V is the representative velocity

, is the repreaentative dimension

p is the viscosity

p is the p:ressure

T is the shear stress

B is the bulk modulus of elasticity

0 is the velocity of sound.

In the pipe flow experirmeias,. the elastic (or com-
pressibility) effect and the gravity effect are negligible.
The Mach and Froude numbers, therefore. are of little
concern. Reynolds' similarity concept mentioned above
states that one dimensionless ratio is a function of the
others. The number of dimensionless ratios is the sum of
the number of related variables and dimensional constants
less the number of primary dimensions like length. time,
masse and temperature. For the usual flow conditions. it
can be shown that the coefficients p/pV and r/pV2 are
functions of the Reynolds number alone. The dimensionless
drag and lift coefficients of hydrodynamic bodies are a
function of Reynolds number alone for wide ranges of
application.

TURBULENCE FLUCTUATIONS

Reynolds noted that, as the rate of flow is increased,
the flow becomes unstable at a certain Reynolds number.
Depending on the quietness of the initial flow, turbulence
appears at a higher Reynolds number when instabilities are
not damped out, but tends to grow to the state where irreg-
ular flow components are present in all directions. The
Reynolds number where turbulence first occurs is about
2300, based on the equation:

(10)
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where u is the mean flow rate

D is the pipe ID

A is the dynamic viscosity

v is the kinematic viscosity, ;Ip

p is the fluid density.

Reynolds introduced a method of averaging that is
still in use. Turbulent components oscillate in time about
the mean value that is steady in time. The mean value is
defined by the equation:

t+T

' 0 U u(t)dt (11)
t

where T is a time interval large enough for the mean
value to be constant in time t

u(t) is the velocity component at a point in the fluid

U is the mean velocity at that point.

The mean values of the turbulent fluctuating velocity
and pressure components are zero., since turbulent com-
ponents are the difference of a velocity from the mean:

U U + U' (12)

where u is the velocity at a point

u is the mean velocity at that point

u'is the fluctuating component at that point.

The mean square values of fluctuating components
are not zero, in general. The quadratic mean values are
obtained by the equation:

t+T
u I U 1at 13)

t
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where u is the mean nqure Vw1mh, of velocity at a point.

The turbulent components are assumed to be continu-
ous throughout the flow, with the fluctuations being small
compL red to the flow dimensions. Thus, the fluctuating
components are assumed to be cortinuous functions of the
distant c and time, and the basic equations of mechanics
apply Curing turbulence. The equations are written irn
terms 9f the values during turbulence such as u - 7 + u',
The mean over time of the equations is taken by the Reyn-
olds' method of averaging. Terms of the first power of
the flucruating components are zero. Additional quadratic
terms t.,uch as u appear. Many studies have been made
of isotropic turbulence. The mathematics is simple, and
many turbulent processes, such as the flow at the center of
the pipe, tend to be isotropic. In isotropic turbulence,
there is no correlation between components in different
directions at a point, and the components are equal:

uL =, = M = 0 (14)

where u, v, and w are the fluctuating velocity components
in three orthogonal directions.

For a fluid to have turbulent shearing stresses, there
must be correlations between the different components, and
such quadratic terms as U", 7M, and IM are not zero. This
occurs in non-isotropic boundary layer flow where the
influence of viscosity is of importance. For pipe flow, the
correlation between the radial fluctuating component and
the axial fluctuating component is:

U- = 0 at pipe center and at wall.
rx

(15)
-ura. xa L- 0.45 at maximum.
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STRESSES IN TURBULENCE

The Navier Stokes equations of motion for a point
show stress components due to turbulence in addition to
those due to laminar flow. These stresses are called the
Reynolds stresses, or the virtual stresses of turbulence.
They are the quadratic time mean of the fluctuating com-
ponents multiplied by the fluid density, and have both nor-
mal and tangential components in a boundary layer. u, s

and ue, with t4j° They add the tensor utuI to the stress-
strain relation, equatioc. 3, to form the turlulent stress-
strain relation. The total stresses for an incompressible
turbulerna fluid are given in cylindrical coordinates by the
equations:

rrrr a -P + 211-' " - prr r r r

U

~o arb r

x x x

(1G)

r po ar rap r)/ rp

xr a + - -Pu U
xr "r r

Ox a A P OU
OX r xx x /x

60

$:



where 0 and U are the mean flow velocities in the
radial, tangential, and longitudinal

directions

Ur , a, and u are the fluctuating turbulent velocities
in the radial, tangential, and longi-
tudinal directions

P is the hydrostatic pressure

Iis the dynamic viscosity

p is the fluid density.

In order to solve the Navier Stokes equations and the
stress-strain relationships for turbulent flows, there must
be obtained relations between the mean and the fluctuating
components. J. Laufer,2 P. S. KIebanoff,3 G. B. Schu-
bauer,4 and others at the National Bureau of Standards;
British fluid mechanicists such as A. A. Townsend;" and
other scientists, particularly from Holland such as
J. 0. Hinzea have for many years been conducting both
theoretical and experimental studies of boundary layers,
especially in air. They have reported relations between
the fluctuating and the mean components in terms of non-
dimensional ratios. These ratios are mainly dependent on
the geometry. The energy balance in the boundary layers
has also been reported upon very completely.

STRUCTURE OF TURBULENT LAYERS

Turbulence of fluids flowing over solids always leads
to dynamic similarity conditions. The l aw of the wall

states that turbulent flow near walls depends on the wall
stress and the kinematic viscosity, v. A boundary layer is
composed of a thin region called the laminar sublayer, a
constant stress layer, and an outer layer. The laminar
sublayer contains -urbulent components, but in lesser mag-
nitudes, and its nature is mainly determined by it3 vis-
cosity and the wall stress. Ii the constant stress layer,
the motion is almost entirely determined by the shear
stress and the viscosity. Most turbulence is produced in
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or near the r3gion of constant stress. There is energy
equilibrium. The turbulent energy dissil ation into eddies
and eventually into heat is about equal to the local produc-
tion of turbulence in this region. When the first law of
thermodynamics, or the energy equation, is written in
terms of the turbulent quantities (the meall plus the fluctu-
ations), the energy equation can be separated into mean
flow and turbulent equations. These equations, like the
first law, are energy balances equating tae sum of all tne

components at a point to zero. Figure B-1 shows the

energy balance of mean motion in a boundary layer along a

smooth wall %vith zero pressure gradient. There is inter-
action between the inner- and outer parts of the boundary
layer. In the outir rugcn, mean flow kinetic energy is

,TOTAL WORK OFs / SHEA, STRESSES
:>j -- DiSSIPATION TO TURBULENCE

20 CONVECTION-.

V 3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

WALL DISTANCE/BOUNDARY LAYER THICKNESS, x216

Figure B-1. Energy balance of mean, mot ion in a
boundary layer along a smooth wall with zero
pressure gradient (adapted .from ref. 5).
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retarded by the work of the turbulent shear stresses. The
gain to the mean motion by convection is about equal to that
lost by the turbulent shear stress work. The production of
turbulence is small in the outer region, but it increases
strongly toward the wall. In the inner region, the produc-
tion of turbulence exceeds that due to convection, with the
difference behig made up by the work of turbulent shear
stresses. There is an influx of energy toward the wall
where it is converted mainly into turbulence energy,
originating from the mean motion, but is in part diffused
back by turbulence into the outer region. Figure B-2 shows
the turbulent energy balance in a pipe at the wall region.
The energies of dissipation into heat, viscous transfer of
kin tic energy, production of turbulent energy, and the
diffusion of kinetic and pressure energies are shown.

WALL REYNOLDS NUM8ER, Rw = x2 iOv
WHERE x2 IS THE DISTANCE FROM WALL

9 IS MEAN, AVERAGE VELOCITY
v IS FLUID KINEMATIC VISCOSITY

9 0.4 -- - I -
0 PRESSURE DIFFUSION

N 0.2 \TURBULENTENRG-= \ <-LPRODUCTION

0.0 -A=,-

I5 O DISSIPATION

0. 2 KIFFETIC
VISCOUS TRANSFER KINETIc
KINSTIC ENERGY ENERGY

0.4 L .. ..

0 10 20 30 40 50 60 70 £0 90
WALL REYNOLDS NUMBER

Figure B-2. Enorgy balance in wall region of
pipe flow.
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Close to the wall, all of the terms are of importance; dis-
sipation and production are nearly equal, but opposite in
algebraic sign, as are terms representing diffusion of
kinetic energy and pressure energy. Further from the wall.
the main terms in the energy balance are the production and
the dissipation with some turbulent diffusion. In the outer
region of energy, balance is betwcen the turbulent diffusion
energy and the dissipation. The peak values of the terms
occur at the wall end of the constant stress region at dis-
tances corresponding to wall Reynolds numbers less than
10 based on the wall distance and the friction velocity,
x u/lv. The friction velocity is defined by the equation

• 2 L2 (17)

where T is the wall stress

p is the fluid density

u* i the friction velocity

AP is the pressure drop in the length L

r is the pipe radius.

Wall Reynolds numbers of about 8 have been called
the end of the laminar sublayer. The constant stress layer
of energy equilibrium extends from the end of the laminar
sublayer to Reynolds numbers of about 100. Figure B-3
summarizes figuratively what happens to the energy flow in
a boundary layer, indicating the extraction of the energy of
mean flow and its transfer in the direction of the wall. The
greatest production and dissipation are shown to occur
near the wall. The turbulent diffusion of energy toward the
outer region is also shown.
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OUTER EDGE OF LAYER

ENERGY EXTRACTION FROM
MEAN FLOW BY THE REYNOLDS

STRESS GRADIENT I

ENERGY TRANSFER INWARDS BY I OUTER LAYER
REYNOLDS STRESS I

DIFFUSION OF TURBULENT
FNERGY FROM INNER LAYER

CONVERSION INTO TURBULENT I LAYER
ENERGY AND D I SS I PATION T

Figure B-3. Energy flow in a boundary layer.

TURBULENCE COMPONENTS

The experimental studies of Laufer and others indicate
that the velocity ratios are mainly a function of the geom-
etry and are nearly constant in the constant stre3s region.
Figure B-4 shows the ratios of the fluctuating components
to the maximum mean axial velocity plotted against the wall
distance radius ratio, x. / r. Figure B-5 shows the ratios
of the fluctuating components to the friction velocity plotted
against the wall Reynolds number, x u Iv. These velocity
ratios are nearly constant in the constant stress region.
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WALL DISTANCEIRADIUS x2Ir
WHERE U IS THE MAXIMUM MEAN VELOCITY

x2 IS THE DISTANCE FROM THE PIPE WALL
rIS THE PIPE RAD IUS

Ur IS THE FLUCTUATING RADIAL TURBULENT VELOCITY
U0IS THE FLUCTUATING TANGENTIAL TURBULENT VELOCITY

UX IS THE FLUCTUATING LONGITUDINAL TURBULENT VELOCITY

S0.10__ __ _ _
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WALL D ISTANCE !RAD I US

Figure B-4. Relative turbulent intensities in
pipe flow (adapted from ref. 2).
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WALL REYNOLDS NUMBER, Rw =-U-x 21v

WHERE v IS THE FLUID KINEMATIC VISCOSITY
u. IS TE FRICTION VELOCITY
x2 IS THE DISTANCE FROM THE PIPE WALL
Ur IS THE FLUCTUATING RADIAL TURBULENT VELOCITY
uq IS THE FLUCTUATING TANGENTIAL TURBULENT VELOCITY
Ux IS THE FLUCTUATING LONGITUDINAL TURBULENT VELOCITY

zo 

_
0

0 1.0 _______

-
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0 0 0 0 050 60Mo
WALL REYNOLDS NUMBER

Figure B-5. Tt rbalent intensities near the wall
in pipe flow (adapted from re f. 2).

The distribution of the turbulence shear stress is of
interest. The shear stress/friction velocity ratio, -uruI/u 2
is plotted £or pipe flow near the pipe wall (fig. B-6). The
correlation coefficient for shear components can be
approximated from the velocity ratios of figure B-4 and
from the shear stress/friction velocity ratios of figure B-5.
The velocities are the rms flactuations for the components:
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or

Ur x  u .9
,.45 (18)
x U U .8x2.5

WALL REYNOLDS .AJ, B R, Rw : u.x21 v
WALL STRESSIFR ICTION VELOCITY, -TQIu.2
,MERE v IS IM! FLUID KINIATIC VISCOSITY

u, IS THE FRICTION VELOCITY

x2 IS TH DISTAfME FRM THE PIPE WALL
ux IS 7K FLUCTUATING LONGITUDINAL TURBULENT VELOC17Y
Ur IS THE FLUCTUATING RADIAL TURBULENT VELOCITY
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Pigure B-6. Dit tribut ion of turbulence shear

streoe near the wall in pipe flow (adapted from ref. 2).
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The correlation coefficient for the shear is equal to approx-
imately 0.45 over most of the pipe. The ratio of twice the
sum of the turbulent kinetic energies, utU,, or qt 2 , and the
shear stress, -UrUx, is nearly constant over most of the
pipe. Figure B-7 is a plot of this ratio, -uu/ /q againat
the wall distance/radius ratio. x.Ir.

WALL DISTANCEJRADIUS : x21r
TURBULENCE SHEAR STRESSITUR BULENCE K IETIC ENERGY - TUllqi2

WHERE x2 I S THE D' STANCE FROM THE P I PE WALL
r IS THE PIPERADIUS

UrUx IS THE SHEAR STRESS
qi2 IS TWICE THE SUM OF THE TURBULENT KINTIC ENERGIES, ui AND uj

~0.20- -

0.16

cc 0.12 -
LU~3

1E

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
WALL, D I STANCEIRAD I US

Figure B-?. Ratios between turbulence shear stress and
turbulence kinetic energy in pipe flow (adapted from ref. 2).
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Figure B-8 shows the turbulent kinetic energy and the

turbulent shear stress, -uruX plotted against the wall
distance/radius ratio.

WALL D I STANCEIRAD I US, x2xD

TURBULENCE KIN.TIC EKTRGY/FRICTION VELOCITY, 1j2/u. 2

TURBULENCE SHEAR STRESS/FRICTION VELOCITY, - ux/ua 2

WHERE x2 IS THE DISTANCE FROM THE PIPE WALL
qI2 IS TWICE THE SUM OF THE TURBULENT KINETIC EKRGICES, ui AND uj
u, IS THE FRICTION VELOCITY
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Fitgure B-8. Distribut ion of turbulence kinetic energy and

turbulence shear otress In pipe flow (3dapted from ref. 2).
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PRESSURE/DYNAMIC HEAD RATIO

The experimental test hydrophones measured the
fluctuating component of the normal stress, arr, at the
cylindrical pipe wall: arr =-pu. Laufer was able to

measure the distribution of the u accounting for the
viscous transfer of kinetic energy toward the wall in the
energy balanc,!. The diffusion of the pressure energy
toward the wall is the closing balance in the pipe flow
energy balance curves of figure B-2. The normal fluctu-
ating pressure component at the wall can be expected to
approximate that in the constant pressure layer.

Willmarth measured the wall pressure fluctuations at
the wall in a 4-inch ID wind tunnel to speeds of Mach 0. 8. 7
His measurements are given in terms of the ratio between
the fluctuating rms pressure and the dynamic head, JpU2 ,
with U being the free-stream velocity outside the boundary
layer. The ratio, p/pU3, has a nearly constant value of
0. 0035 over the Mach number range. (Theoretical justifi-
cation of the constant ratio is not attempted by Willmarth:
the normal fluctuating pressure must be primarily related
to the wall stress. ) There is a viscous transfer of kinetic
energy toward the wall from the constant stress layer, and
the pressure energy is also transferred toward the wall.
The fluctuating normal pressure in the radial direction
should be nearly the same at the wall and at the constant
stress layer. Ratios of the same general magnitude as
that of Willmarth are obtained from Laufer's velocity ratio
measurements.

If the ratio of pur2 / pL' is obtained from the ratios
between the rms radial velocity fluctuation and the maximum
mean flow velocity, Ur , taken from figure B-4, a rms wall
pressure to dynamic pressure ratio results:

2u "

/q - 2 x 0.04* 0.0032 (19)

m
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For a mean flow velocity distribution across the pipe of
1/7th power, the ratio of the average mean flow rate to the
maximum mean flow rate is 0.817. The wall pressure/
dynamic head ratio based on the average flow velocity is
plq 0.0032/0.8172 = 0.00478, using figure B-4.

The wall stress/dynamic head dimensionless ratio
can also be used to evaluate the fluctuating pressure to dy-
namic head ratio, p/q. The wall stress/inertia head ratio,
r/q, is nearly a constant over all the experimental mea-
surements, but is a function of the Reynolds number. Fig-
ure B-5 shows the radiu velocity/shear velocity ratios that
can be used to obtain the p/q ratios:

Is U 2

p lq W ---× --T , (20)

K since TW = Pu, 2 , where ur/u* is obtained from figure B-5
and is assumed to be - 0.9. It is assumed above that the

0 normal fluctuating pressure at the wall is determined by
the kinetic energy transported from the ,'onstant stress
layer without much change, p - r2• For an approximate
ratio of wall stress/dynamic head of 0.0075 for a Reynolds
number of 15, 000, the p/q ratio would be 0.0075 x 0.91

0. 00608.

Innumerable experimental measurements of wall
friction in pipe flow have been made over many years; the
wall stress per unit area is given in terms of the dynamic
head and a friction coefficient: Tw = fpU2 /2 where u is the

average mean velocity. and f is the friction coefficient, or
the ratio r /q.

Many experimenters like Nikuradse ' have obtained
relationships with the friction coefficient and Reyno] Is
number. H. Blasius' suggested a simple r~lationship that
is accurate for Reynolds numbers from 3000 to 100, 000:

1 = 0. 079R14 where f is the friction coefficient or 7 I/
ratio, and R is the Reynolds number based on the average
velocity and the pipe diameter, D/Yi. Thus, the p/q ratio
can be estimated at the wall from the friction coefficient
and the velocity ratio, u /U, by the equation:

r
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U[
pwq r 7 r 1 (21)

For the water pipe flow experiment, broadband
fluctuating pressures were recorded on all the test ruri.
This noise, recorded on magnetic tapes, was analyzed with
Sanborn equipment to obtain broadband rms magnitudes.
Broadband rms magnitudes were also obtained by numerical
integration of the spectrum levels. Since random pressures
combine as the sum of their squares, the numerical
integration was performed by dividing the frequencies into
narrow bands, in which the spectrum level was relatively
constant, and adding up the sum of the squares by:

--p 9 4f' +p fAp' 2
P2 P 1 aM 2 Pa

6 1 2 4f + 0,2 Af - (22)
-11 + p181 1

where p an is the rms spectrum level or per cycle bandwidth
level

f is the bandwidth over which the spectrum is
nearly constant

P is the rms broadband pressure.

The ratios of the broadbana mns rr-initudes to the dynamic
head are presented, for magrutudes obtained by the various
methods, in figures 16 and 17.

TURBULENCE DISSIPATION

Much of the knowledge of turbulence is due to the
experimentalists. The equations in terms of the mean and
fluctuating components usually cannot be solved without
relationships between them. Various experimental ratioB of
fluctuating to the mean components as a function of the wall
distance have been discussed. The energy kalances must
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be made with measured terms. The most complete and
reliable measurements with turbulent itities are the
pipe measurements of Laufer. His meaz, its were
made in air at speeds of 3 and 30 meters per second ma;±-
mum mean velocity, corresponding to Reynolds numbers of
50, 000 and 500, 000 based on the maximum average veloc-
ities and the pipe diameter (9. 72 inches ID). By a hot wire
anemometer technique, he was able to measure triple ve-
locity correlations such as Ur3 a 2 Ur, and up ur to obtain
terms for the energy balance equation. He measured the

velocity derivatives ) ( \2 and p and,

by assuming local isotropy, he was able to evaluate turbu-
lence dissipation. Figure B-9 shows the turbulence dissi-
pation in pipe flow based on Laufer's measurements,
expressed in nonlimensional numbers as EcVi2u, 3 where E'
is the dissipation, D is the pipe diameter, and u is the
friction velocity. This quantity has a value of approximately
22 at 1/10 radius from the pipe wall; for greater distances,
it varies hyperbolically with distance from the wall. The
average value appears to be about 11 if the dissipation
coefficient remains the same for points nearer the wall
than 1/10 radius (the dissipation was not measured in the
constant stress layer which is nearer the wall). Laufer's

values are a careful evaluation of the dissipation for
isotropy of the dissipation tensor, V u uaU .x x$. The

.7 L7 t tvalues give local dissipation for points in the pipe outside
the region near the wall.

Laufer's vplues of the dissipation function can be
compared with the shear measurements of the water pipe
flow experiment. If one assumes that the viscous dissipa-
tion is small compared to turbulence dissipation (as can be
expected at higher Reynolds numbers), the shear power at
the wall can be assumed to be equal to the turbulence
dissipatiun in the corresponding volume:

dL 2 dL L 2

E 'r2 7L r - 27rL C, r rdt -)
7A 7r
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REYNOLDS NUMBER, R = UDlW- 50,000
WALL DISTANCEIRADUIS = 2x2ID
TURBULENCE DISSIPATION: e'Dr2u° 3

WHERE U IS THE MAXIMUM MEAN VELOCITY
0 IS THE PIPE INSIDE DIANMETlER
V IS THE FLUID KINFTIC VISCOSITY

X2 IS THE DISTANCE FROM THE PIPE WALL
6' IS THE DISSIPATION IN L2/T3

u. IS THE FRICTION VELOCITY
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Figure B-9. 2'urbulence diseipat ion in pipe
flow (adapted fr'r reference 2j..
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where c' is the average power dissipation per unit mass

T is the wall shear stress

r is the pipe radius

L is the pipe length from the velocity expression dL/dt

p is the mass density of the fluid (p=m/ V)

L IT3 is the dimension of turbulence dissipation which
is a kinematic quantity of energy per unit time
per unit mass.

The equation above states that the average dissipation
is directly proportional to the wall shear power as expected.
In figure B-10, cA' is plotted against wall shear power for
water flow at 7.5 fps through a 0.494-inch ID pipe, with a
measured wall shear stress of 0. 396 pounds per square foot
and a mass density equal to 62. 422 lb/ft3 divided by
32. 174 ft/sec2 . The turbulence dissipation for these con-
ditions is 148/6 3 ftW /sec 3 . The nondimensional dissipa-
tion coefficient (defined by Laufer as c'D/2u I) which
corresponds to this friction velocity and dissipation value
is 32.7. This is of the order of magnitude of Laufer's values.

S 200
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N 100

Soo
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

WALL SIHEAR POWER, FOOT MU1 DSI.EONDISQUARE FOOT

Figure B-10. Approximate turbulence dissipation
in a 0 .494-inch ID pipe,
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SOUND POWER

A portion of the fluctuating turbulence power can be
called sound power. Sound power per unit area, or the
intensity of a sound wave, is defined as the average rate of
flow of sound energy. For the turbulent components, the
intensity is the correlation between the fluctuating pressure
and the velocity component in the same direction. The
sound intensity in the radial direction is the term PrUr or
purl. Laufer measured the triple velocity correlation,

U r 3 /u* 3. over the pipe and gives a value of 0.45 over most

of the wall distances. An index of sound power can be ob-
tained from the ratio of the radial sound intensity to the
average friction power:

= r r * = - 0.026 (24)l1 rU T-U uU U, 2

where r w is the wall friction stress, pu rW

/ is the wall friction factor

is the average mean velocity

u is the radial velocity component rms.
r

This sound power ratio was measured to be 0. 026 as an
average for the water pipe flow test runs.

The intensity of the radiated sound due to turbulence
was discussed by M. J. Lighthill in his classic papers in
the Proceedings of the Royal Society of London. '0 - ' By
approximating for the covariances in Lighthill's expression
for the radiated intensity, Proudeman has obtained an

equation for the radiated power per unit volume for isotropic
turbulence. 1 Proudeman considers the equation repre-
sentative at higher Reynolds numbers:
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P 38P(Ut) C1 (25)

where P is the radiated power per unit volume

C' is the dissipation per unit mass

c is the velocity of sound in the medium

U' is the fluctuating velocity component.

RADIATED POWER

The portion of the wall shear power radiated as sound
can be estimated roughly using the average dissipation and
Proudeman's equation. The fraction of the power radiated
is:

38p(u' 2 ) 5 r' 38p (u' ) 2T dLvr 2L

E A 38(u'2 )
_ _ _ _ _ _ _ _ pr dt

dLT 2rLdL

W t w ct

It can be seen that, according to this formula, the fraction
of power radated into sound is very small, except for high
fluctuating velocities. For a fluctuating velocity of 10
centimeters per second (corresponding to a water flow rate
of 30 pounds per minute through the test pipe) and with the
velocity of sound in water of 1. 48X101 centimeters per
second, the fraction radiated into sound is 28(10/1.48X10 s )6

- 0.53x10"2.
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HARMONIC ANALYSIS

All of the pressure fluctuations of this report were
measured at one point of the hydrophone output at the pipe
wall. The photographs of both the hydrophone and the
micrometer outputs show the random nature of the pressure
fluctuations. The waveform is constantly changing its
shape with time and never exactly repeats itself within
finite time. The infinite number of waveforms is called an
ensemble. Functions of this type are described by statis-
ticians in terms of probability distributions for the in-
stantaneous values to arrive at statistical averages. The
averages of this analysis are values measured by tech-
niques based on harmonic analysis. Generalized harmonic
methods are suitable for analyzing most functions such as
periodic, transient or aperiodic, and random functiens. It
has been mentioneC earlier that turbulence is primarily
described by a representative velocity, a representative
length, space and time correlations, and power spectra.
The present analysis principally gives the broadband rms
magnitude which is related to the velocities, and the power
spectra. Autocorrelations are also analyzed. They play a
central role in the general harmonic theory. The power
spectra are obtainable without the autocorrelations. Har-
monic analysis is based on the assumption by the Wiener
theorem that autocorrelations exist for the functions and
that a common autocorrelation exists for all the members
of the ensemble. This means that all members of an
ensemble have the same power spectrum regardless of the
waveform. Due to the fluctuating nature of turbulence with
zero mean values, and because the relationships are usually
between two quantities expressed as a product, the variables
of the analysis are mostly in quadratic terms such as the
mean squared values, the power spectra, and the correla-
tions (the broadband values were discussed in conjunction
with pressure/dynamic head ratios).
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CORRELATIONS DEFINED

The correlations between quantities in flow have been
shown to be tensors by de Karman and Howarth.' 3 Correla-
tions in a steady flow are between fluctuating vector com-

ponents integrated, as a product over a sufficiently long
timo period, to the correlation independent of time:

T

R (xr) - (x)u (x+r)dt (27)
ti IiT-o f t(~~xrd

0

where R j(x, r) is the correlation between vector components
t and j displaced by a vector distance r

u (x) is the instantaneous value at point x of the t
component of the fluctuating vector velocity

u (x, r) is the instantaneous value of the fluctuating

vector J component at the point displaced r
from the point x

T is the interval of integration.

Correlations in flow have been defined in various
manners. Figure B-11 shows some of the definitio,,: In
1937, de Karman and Howarth defined longitudinal correla-
tion as the correlation between components at points A and
B in the same direction as the line between the points.
Lateral correlation is defined as that between two compo-
nents at right angles to the direction between points A and B.
Taylor's experimental measurements were made with hot
wires which responded mainly to components in the direction
of flow in the wind tunnel. ' 4 , " Taylor's longitudinal cor-
relation is between velocity components in the direction of
the main flow at two points located in a line in the main
flow direction. Taylor's lateral correlation is between
components in the main flow direction but displaced at right
angles to the tunnel. Harrison at David Taylor Model Basin
and Von Winkle at the U. S. ravy Underwater Sound
Laboratory relate pressure values at the wall in their wind
tunnels. , 17 Pressure correlations are called longitudinal
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Figure B-11. Sketch of space correlations for pipe flow*
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for points in the direction of tunnel flow. Harrison calls
correlations between wall poirts at right angles to the tunnel
transverse correlations, while Von Winkle calls them
lateral correlations. If it is assumed that the wall pressures
are normal to the wall, both the longitudinal and the lateral
(transverse) pressure correlations are of the lateral type as
defined by de Karman and Howarth, since the components
are normal to the direction of the displacements. These
pressure correlations show principally how the fluctuating
wall pressure is related along the wall surface. It can be
expected that longitudinal pressure correlations are over
larger distances than the lateral pressure correlations,
since the main flow is convected in the longitudinal (tunnel)
direction.

For zero displacement distance, the nondimensional
correlation of shear stress, obtained by dividing the products
of the rms magnitudes, has been mentioned as being equal
to approximately 0.45 over most of the pipe radii:

rx

[,Cr r X

The correlations of this report are autocorrelations.
They correlate the pressure components at the same point
and in the same radial direction, but differing in the time
separation or lag between them:

T

(r)- P(t)p(t+,r)dt (29)

where R(r) is the autocorrelation between the fluctuating
radial pressures displaced by the time lag T

T is the time intezvval of integration.

8
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This autocorrelaion of pressures is similar to the lateral
correlation between radial pressure components displaced
in the direction of mean flow: the displacement distance is
the product of the time lag and the mean flow velocity.

PERIODIC FUNCTIONS ANALYZED

Since most water pipe flow experimental measure-
ments were of spectra, a brief theoretical discussion of
harmonic analysis follows: it is a generalized Fourier

series approach .to the study of many functions. A Fourier
series is an infinite series expression of a function that
repeats itself over intervals of an infinite range of the inde-
pendent variable. The function is expressed as an infinite

series of constants multiplied by circular functions with
periods of integer multiples of the period of the original
function. The constant multipliers are obtained from the
average of the function weighted by each harmonic circular
function over the fundamental period, because of the im-
portant orthogonality conditions for circular functions. The
function can be written in terms of the exponential form of
circular or sine functions with both positive and negative
angular velocities:

f " F(n)ejn wt n = O, ±1, ±2....

1T/2

F(n) = T f(t)e d t  (30)
1 -T /2

where T is the fundamental period 21T/w

f(t) is the periodic function expressed as an infinite

series in e 'jn -I w

F(n) is the complex constant of the series in e

f(t) and F(n) are Fourier transforms of each other

F(0) is the dc component which must be finite.

83



t.

The autocorrelation of the periodic function f(t) is
obtained by the quadratic average:

t 2Z/ fl w
11-- (tV 'lt,+rksd Fin) e 1)

where JF(n)j is the absolute magnitude of F(n)

JF(n)I2 is the power spectrum of f(t)

R(r) is the autocorrelation for lag 'r.

The autocorrelation and the power spectrum are
Fourier transforms of each other:

F12 T f T J(r)e w T (32)
_T -/2

Both the Fourier spectrum and the power spectrum are
discrete functions of angular velocity. The function f(t) is
a periodic function of time, and the autocorrelation is a
periodic function of the lag.

APERIODIC FUNCTIONS

Aperiodic functiuns such as transients are analyzed
by the Fourier integral. The fundamental period of the
Fourier series is allowed to approach infinity, and an
aperiodic function is represented by the Fourier integral:
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(33)

F(W) f f(t)ejtdt

where f(t) is an aperiodic function and the Fourier trans-

form of F(1

F(W) is the Fourier transform off(t)

F(O) is required to be finite, che condition of
convergence.

For aperiodic functions, the autocorrelation does not exist
if it is defined as above, since it would be zero when
averaging the quadratic over an infinite interval, The power
spectrum does not exist but an energy spectrum does exist
when the autocorrelation is defined as the quadratic sum
without dividing by the period to form an average. The
function f(t) is aperiodic by definition, and the Fourier
transform of f(t) is a continuous function of frequency or

angular velocity.

RANDOM FUNCTIONS

The water flow noise pressure fluctuations measured
with the test hydrophones appear to be random functions of
time. The autocorrelation function can be assumed to exist
and be related to the power density spectrum, The auto-
correlation is an even function with the maximum value for
zero lag, For the autocorrelation function to be fully
1-ealizable, the power spectrum must be positive. Both the
autocorrelation function and the power spectrum are real
and even for random and periodic functions. The Fourier
transforms for random functions can be written as cosine

transforma:

I
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4A

A( f p(t)p(t+ir)dt = GV)cosWrdf (34)
lim T- 2I J- o

GV) =4 f (r)cosWrdr

where 'C) is the power spectrum based on only positive
frequencies

AR() is the autocorrelation

p(t) is the wall pressure fluctuation.

Pars v's theorem is obtained by setting the lag equal to
zero. This correspond s te h -- M ean square value of the

random function expressed in integrals both in frequency
and lag as the independent variables:

COY
R ( f f p(t)2dt (35)(o) = p = j 0t df - 2-f

lim -T

where p 2 is the mean square value of the c.ndom function.

The numerical integration of the measured power

A dersity spectra for -water flow noise shows that they are
equal to the broadband magnitude squared, as expected

above. This shows that there are no hidden periodicies in

the data.

FUNCTIONS SUMMARIZED

Some of the characteristics of the transforms are
indicated by their dimnensions. If the dimensions of f'(t)2

are assumed to be of the dimensions of power, the auto-
correlations are of the dimensions of power. The power

spectrum is in the terms of power times lag time, or work.

The Fourier integral transform of a functionf .t) is of the
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dimensions off (t) multiplied by time. The function f(t)
and autocorrelations must be aperiodic if their transforms
(which are in the dimensions of a product with an infinite
time interval) are to be finite. Random functions do not
have finite Fourier transforms, but their autocorrelations
are aperiodic and their power spectra are continuous
functions. In the case of periodic functions, the autocor-
relation and the power spectrum are in the same dimen-
sions, as are the function itself and its Fourier transform.
Here, the function and the autocorrelation are both periodic,
and the Fourier spectrum and the power spectrum both
occur at the same discrete frequencies. The nature of the
transforms of various function types is summarized in
table B-i.

TABLE B-I. NATURE OF TRANSFORMS

OF VARIOUS FUNCTION TYPES

I FUNCTION TYPES

TRANSFORMS Periodic Transient Random Step Impulse

f(t) periodic aperiodic continuous continuing discrete

Fourier spectrum discrete dc component infinite infinite at conti,.uous
continuous everyvwhere zero dc

component

after step

Power spectrum discrete none (energy continuous discrete at none

spectrum) zero only

Autocorrelation periodic none aperiodic continuous none
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NUMERICAL ANALYSIS

AUTOCORRELATIONS

In the water pipe flow experiments, photographs weretaken of oscilloscopic tracings of hydrophone signals, to

provide time records of sound pressure at one point in the
pipe for numerical evsluation of the autocorrelations and
power spectra. The form of correlation coefficient for
numerical data is the sum of the product of the differences
from the mean values for the two variables divided by their
magnitudes:

A' X(x-x)(y--) (36)

to

where x and y are two variables correlated.

For the time data, the record is divided into N readings,
Xr, r=1, 2, 3, ... N equally spaced intervals, r,, with the
time record, T=N7", . The autocorrelation between the values
of x r at two points on the record is obtained for the lag time
between them. The lag, T, is taken as equal to m 1  with
rf=O, 1, 2, 3, ... K K<N. The autocorrelation as a function
of the number of lag intervals, m, is given by.

N-M

S -B)x -C-BCr rn rm mm (37)
tM (37)

iN -rn N-rn I(.-B 21)(-C 2 )

S(x -B~) x~ 3m
r=1 r=1

N-m

where A 2: Xx+
N-mr rzl
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N-m

r=1

N

r=m+l

N-,n

rn ivrn r

NE
rM N-m + r

m=O, 1, 2, 3, ... K K<N

If Bn. Cm. and Em are essentially constant, the autocorrelation
equation simplifies to the form:

A 2~m- _(38)
rn X2 -Y 2

where Y 1

r= 1

N

r= 1

The power spectra were calculated by an equation
that does not use the autocorrelations as computed above.
The number of time data in the photos is small, even though
several were combined in the analysis. The normalized
power spectra were calculated by the equation equivalent to
the numerical Fourier transform:

T (u 2+Z, 2)

n n
n w
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U n (xr-7)cos2vrrf n (39)

r=1

k

v = _ (x-)sin2frf Tr n
n (X r-

r=1

wherew k(x-71)

1

f 2k'rfjr
1

The power spectra at the frequencies corresponding to each
n were smoothed by a Hamming method:

0. 23P +O.54p +O. 23pK n Pn-i' n n+1

Figures 5 and 6 show the autocorrelations obtained by
the numerical method from the photographs. The autocor-

relation curves give, for the steady flow, the Taylor micro-
scale defined by:

1 r1& = 40)
Xt2 2

The integral scale is obtained from the integral:

f '9dt (41)

0

With uniform mean flow velocity 7, the time scale in the
autocorrelations is equivalent to distances equal to the mean
velocity multiplied by the time values. Approximate average

values of the microscale and the integral scale are 0.075 and
0. 11 inch, respectively.
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MICROSCALES

Taylor measured the microscales of turbulence
which he himself originally defined. His longitudinal
velocity microscale is a function of flow velocity, being

about 0. 315 inch at 7.5 fps flow. The lateral velocity
microscale is 0. 707 of the longitudinal for isotropic turbu-
lence. The longitudinal, or tunnel-direction, microscale
has an average value of 0. 15 inch for the broadband mea-

surements at the U. S. Navy Underwater Sound Laboratory.
The lateral, or cross-channel, microscale has an average
value of 0.49 of the longitudinal average.

POWER SPECTRUM

Figures 9 and 10 show spectra numerically evaluated
from the photographs by the procedures mentioned. Anal-
ysis of random functions is based on the assumption that all
samples of the data have the same autocorrelation under
the same flow conditions. The Wiener theorem states that
the Fourier transform exists if the autocorrelation exists.
The power density spectrum is the same for all waveforms.
The power spectra were also calculated by the numerical
form of the Fouriei transform of the autocorrelations:

P= .T1 [1+2 R/ Rcos2nn]' ] (42)
rm=l r

m=1, 2, 3, ... k n=1, 2, 3, .. h

where P is the power spectrum
n

r is the chosen time interval 1I

/1 is the chosen frequency interval, -*1 2k' 1

The mean squared value of the pressure has been shown
to be the autocorrelation for zero time lag, and the integral
of the powei spectrum:
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T12
~ I p~ity f JGVf)f (43)

liraThiT -fF2 0

where G(f) is the power spectrum

f' in the frequency

T is the time period.

ENERGY SPECTRUM

Graphs in this report show the square root of the
power spectrum plotted against wave number. Much of the
theory of turbulence has been concerned with the frequency
distribution of kinetic energy. Pressure can be considered
to be kinetic energy per unit volume, at least in dimensions.
Thus, the square root of the power spectrum of pressure is
of the same dimensions as the kinetic energy spectrum.
Taylor first showed the transform relationship between the
kinetic energy spectra and the correlations of the velocity
components. His kinetic energy spectra were in terms of
the one-dimensional wave number. The wave number is
equal to the angular velocity divided by the mean velocity,
and has the dimensions of an inverse length. Mathematical
expressions for eddies are written in terms of three-
dimensional wave numbers, and these are directly related
to the eddy sizes. Large eddies cause fluctuations at low
frequencies, and small eddies cause high frequency fluctu-
ations. For the one-dimensional wave number, the inverse
of the wave number cannot be directly connected with eddy
sizes.

Pigure B-12 indicates the general form of the kinetic
energy spectrum plotted against wave number for isotrolc
turbulence. The lower wave-number range contains the
largest eddies; these show permanence and depend upon the
condition of formation. The energy spectrum is maximum
in the range of energy-containing eddies. The reciprocal
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of the wave number of the peak energy is interpreted as the
average size of the energy-containing eddies. In the highest
range, the turbulence becomes statistically steady, with the
change in the mean values becoming small with time.

In this Kolmogoroff range at sufficiently high Reynolds
numbers, the turbulence is independent of external conditions
and is in statistical equilibrium determined by the dissipation
rate and the kinematic viscosity. There is an inertial sub-
range for very high Reynolds numbers where the energy
spectrum is independent of the kinematic viscosity, anddepends solely on the dissipation. The predicted slope of
the energy spectrum/wave number plot in the equilibrium
range is proportional to the negative 5/3 power of the wave
n, mber. Viscous effects become important as the wave
number increases.
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